

January 2015 Introduction to Python coding workshop

Introduction to coding in Python.

A workshop for Feng Lab Group meeting [http://bit.ly/FengPyCode].

Slides link [http://fomightez.github.io/JanFifteenth_slides/#/].

A Google Doc for sharing today [http://bit.ly/FengGoogleDoc]

3:40am-5:30pm, January 15th, 2015. (1st session)

This is 1st session in series; see
second session info
here [http://feng-lab-data-science-toolbox-and-chip-seq.readthedocs.org/en/latest/], and third, hands-on session info
here [http://fenglabwkshopmay2015.readthedocs.io/en/latest/]

	Getting started
	Using this Web site

	Preparation

	Intro to technology

	Why Python
	Slides

	Where to code and run Python
	On Your Desktop - Asterisks indicates those in this section I have used and they are in order of preference/familiarty in this particular section

	In Your Browser/Cloud - Asterisks indicates those in this section I have used

	In Your Browser - Emulators (you won’t know it isn’t REALLY full-featured Python, for the most part)

	for installing IPython Notebook handling on your machine

	Python for today
	Getting started, we’ll use Sourcelair and Sagemath Cloud

	Sagemath Cloud use is for the IPython Notebook ability

	Using Sourcelair to run Python Interactively

	Real World Examples I: Running Other’s Python code
	NGS Analysis with Python

	Example 1

	Example 2

	Real World Examples II: Using APIs
	Plotly

	Yeastmine

	NCBI

	Sources

	Going forward
	Look into

	Intermediate Python and Integrating it with Other Tools

	ADVANCED

	Go beyond…

	Epilogue to Session I
	Comments and docstrings and placeholders

	Installed modules/packages/libraries

	Current scope and visualizing your coding steps

Getting started

Using this Web site

Reload to get the latest links!

A Google Doc for sharing today [http://bit.ly/FengGoogleDoc]

Preparation

Read

Interactive notebooks: Sharing the code by Helen Shen. Nature. 2014 Nov
6;515(7525):151-2. doi: 10.1038/515151a. PMID:
25373681 [http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261]

UPDATE: now I’d probably add Programming: Pick up Python by Jeffrey M.
Perkel. Nature. 2015 February 5;518:125–6.doi:10.1038/518125a.
PMID:25653001 [http://www.nature.com/news/programming-pick-up-python-1.16833]
too

Tech prep

Be sure you have a modern, updated browser on your system. Preferably
Chrome or Firefox.

Register and do the follow-up activation at
SourceLair [https://www.sourcelair.com/].

Register for Sagemath Cloud [https://cloud.sagemath.com].

Be sure to have a good text editor on your computer. Sounds like you may
have been using AquaMac in the past and so this shouldn’t be a problem.
I highly recommend Sublime Text [http://www.sublimetext.com/].
However, for what we’ll be doing Thursday, even TextWrangler on a Mac
will be sufficient. For those not on a Mac, I’d recommend Sublime
Text [http://www.sublimetext.com/] or
Notepad++ [http://notepad-plus-plus.org/] or jEdit.

Intro to technology

We’ll use as a group two technologies today.

	SourceLair [https://www.sourcelair.com/]

	Sagemath Cloud [https://cloud.sagemath.com]

The idea for using cloud-based tools is to make it easier upfront to get
coding and then you can modify what you use as you develop your coding
workflow preferences. (Sorry for needing two, but finding a good
interface that has all the features desired and works on the Upstate
network is not easy.)

Why Python

Slides

Slides link [http://fomightez.github.io/JanFifteenth_slides/#/]

The beginning is covering slides up to Where to code and run Python?

Where to code and run Python

On Your Desktop - Asterisks indicates those in this section I have used and they are in order of preference/familiarty in this particular section

	Anaconda [https://store.continuum.io/cshop/anaconda/] is now the
suggested source for scientific Python by Software Carpentry.

	Enthought’s Canopy Python distribution and Analysis
Environment [https://store.enthought.com/#canopy-academic]*

	IDLE on Windows
PC [https://software.rc.fas.harvard.edu/training/scraping/install/]*

	Sublime Text on a Mac [http://www.sublimetext.com/]* - there
is a way to run code when you are in Sublime Text, see
here [http://stackoverflow.com/questions/8551735/how-do-i-run-python-code-from-sublime-text-2].
Supposedly, it can be done on Windows too if you deal with setting
the path.

	Editing and Running a Python Program With TextWrangler on a
Macintosh [http://www-personal.umich.edu/~csev/courses/shared/handouts/Python-Program-TextWrangler.pdf]*

	Terminal on Mac*

In Your Browser/Cloud - Asterisks indicates those in this section I have used

	Launch sessions via MyBinder.org [https://mybinder.org/] Example can be launched from: Here [https://github.com/fomightez/blast-binder/] and BLAST will work along with Python. Sessions based on R available elsewhere.

	PythonAnywhere [https://www.pythonanywhere.com]* (Others’
recent views at the Python
subreddit [http://www.reddit.com/r/Python/comments/2tr8vk/what_are_your_experiences_with_pythonanywhere/])

	Domino Data Lab [http://www.dominodatalab.com/]* - enables cloud-based Jupyter Notebook (formerly called IPython Notebook) work along with many other languages and functionality.

	Sagemath Cloud [https://cloud.sagemath.com] Jupyter Notebook (formerly called IPython Notebook) work An introduction can be found
here [http://www.randalolson.com/2013/11/02/sagemath-cloud-makes-collaborating-with-ipython-notebooks-easier-than-ever/]

	Azure notebooks

	Wakari.io - Web-based Python Data
Analysis [https://www.wakari.io/]* - Unfortunately, the IPython
notebook aspect doesn’t seem to work when on Upstate’s network, but
you can still use Python there.

	Code with Mu: a simple Python editor for beginner programmers [https://codewith.mu/] (Found in 2019. I don’t know if it is emulator or actual python.)

	Trinket [https://trinket.io/]

	ScienceBox [https://www.yhathq.com/products/sciencebox] - lacks
free version as far as I know. All above have one.

	Amazon Web Services*- has a free low level one for first year. All
above ScienceBox have free version.

	DigitalOcean - lacks free version as far as I know. All above
ScienceBox have free version.

	Heroku - lacks free version as far as I know. All above ScienceBox
have free version.

	Rackspace - lacks free version as far as I know. All above ScienceBox
have free version.

	Google App Engine - I am unsure of cost here. Try Google Cloud
Platform free for 60
days [https://cloud.google.com/free-trial/?utm_source=twitter&utm_medium=display&utm_campaign=offnetwork_q414&utm_content=text]

	SourceLair [https://www.sourcelair.com/home]* <– NO LONGER FREE

In Your Browser - Emulators (you won’t know it isn’t REALLY full-featured Python, for the most part)

	Code with Mu: a simple Python editor for beginner programmers [https://codewith.mu/] (Found in 2019. I don’t know if it is emulator or actual python.)

	CodeSkulptor [http://www.codeskulptor.org/]*

	tutorialspoint [http://www.tutorialspoint.com/python/python_variable_types.htm]*-
Hit ‘Try it’ on code sample to open window where you can edit and
test any code!

	repl.it [http://repl.it/]

	Codepad [http://codepad.org/]

	Rextester [http://rextester.com/runcode]

for installing IPython Notebook handling on your machine

from Exploratory Computing with
Python [http://mbakker7.github.io/exploratory_computing_with_python/]

The three main options are Canopy
Express [https://store.enthought.com/] (Mac, Windows, Linux),
Anaconda [https://store.continuum.io/cshop/anaconda/] (Mac,
Windows, Linux), and
PythonXY [https://code.google.com/p/pythonxy/wiki/Welcome]
(Windows).

Python for today

Getting started, we’ll use Sourcelair and Sagemath Cloud

SourceLair [https://www.sourcelair.com/home]

Guide to Python on Sourcelair [https://www.sourcelair.com/guides/start/python#introduction]

Sagemath Cloud [https://cloud.sagemath.com] enables cloud-based IPython notebook work. An
introduction can be found [here](

Sagemath Cloud use is for the IPython Notebook ability

SourceLair [https://www.sourcelair.com/home], although cloud-based, is like traditional computing
interfaces for Python and many languages.

We will come back to that.

	a two year-old screencast intro of IPython notebook by Titus Brown [https://www.youtube.com/watch?v=HaS4NXxL5Qc&feature=youtu.be]
(Skip to the three-minute mark since we aren’t necessarily interested
in running it on Amazon web services right now.) A non-interactive
version of the notebook he demonstrates is here [http://nbviewer.ipython.org/github/fomightez/jan2015feng_gr_m/blob/master/others_demos/titus_screencast.ipynb].

Using Sourcelair to run Python Interactively

We will begin to cover

	Basics of Python (TO BE DONE Link to an ipynb with examples in it
already)

	variable types

	strings

	integers

	floats

	booleans

	lists and dictionaries

	slicing strings and indexing items in lists

	math and comparative operators

	conditionals (Slide of comparison from PCfB book, pg. 116?)

	if

	if-else

	loops (Slide of comparison from PCfB book, pg. 117?)

	for

	while

	type conversion

	functions

	file and string handling

We’ll break it up with some real world examples

Real World Examples I: Running Other’s Python code

Methods sections are good for finding what others used and then now you
can use

NGS Analysis with Python

	Miles et al. 2013. Xbp1 Directs Global Repression of Budding Yeast
Transcription during the Transition to Quiescence and Is Important
for the Longevity and Reversibility of the Quiescent State. PMID:
24204289 [http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1003854]

The W303 reference genome in FASTA format and gene annotations in
GFF were obtained from the Wellcome Trust Sanger Institute’s SGRP
group. Sequences from each read were mapped to the Saccharomyces
cerevisiae W303 reference genome using the Tophat application, a
fast splice junction mapper for RNA-Seq reads [75]. Representation
of RNA from annotated genes were assessed using HTSeq, a Python
package developed by Simon Anders at EMBL Heidelberg, with
quantitative expression calculated proportional to the number of
reads per length of the modeled exon (MRPKBME). Finally,
differential gene representation between treatments were assessed
using the R/Bioconductor package DESeq [76].

	HTSeq [http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html]
see manuscript at
http://biorxiv.org/content/biorxiv/early/2014/02/20/002824.full.pdf
Simon Anders, Paul Theodor Pyl, Wolfgang Huber HTSeq — A Python
framework to work with high-throughput sequencing data Bioinformatics
(2014), in print, online at doi:10.1093/bioinformatics/btu638

While the main purpose of HTSeq is to allow you to write your own
analysis scripts, customized to your needs, there are also a couple
of stand-alone scripts for common tasks that can be used without any
Python knowledge. See the Scripts section in the overview below for
what is available.

	RSeQC: An RNA-seq Quality Control
Package [http://dldcc-web.brc.bcm.edu/lilab/liguow/CGI/rseqc/_build/html/]
Example:

geneBody_coverage.py

Read coverage over gene body. This module is used to check if reads
coverage is uniform and if there is any 5’/3’ bias. This module
scales all transcripts to 100 nt and calculates the number of reads
covering each nucleotide position. Finally, it generates a plot
illustrating the coverage profile along the gene body. NOTE: this
module requires lots of memory for large BAM files, because it load
the entire BAM file into memory. We add another script
“geneBody_coverage2.py” into v2.3.1 which takes bigwig (instead of
BAM) as input. It only use 200M RAM, but users need to convert BAM
into WIG, and then WIG into BigWig.

	PyCrac [http://sandergranneman.bio.ed.ac.uk/Granneman_Lab/pyCRAC_software.html]
Example from Webb et al 2014. PAR-CLIP data indicate that
Nrd1-Nab3-dependent transcription termination regulates expression of
hundreds of protein coding genes in yeast. PMID:
24393166. [http://www.ncbi.nlm.nih.gov/pubmed/24393166] Use of
several scripts illustrated in Figure
1 [http://genomebiology.com/2014/15/1/R8/figure/F1]

	NGS analysis using The Eel Pond mRNAseq
Protocol [https://khmer-protocols.readthedocs.org/en/v0.8.4/mrnaseq/]

Once you can run Python, you can use others’ code

Github and materials and methods are great resources as well.

Example 1

Annotate: Annotation of single-nucleotide variants in the yeast
genome [http://depts.washington.edu/sfields/software/annotate/]

Alright let’s see if we can run this.

What so we need?

Looking at the excerpt from the
documentation [http://depts.washington.edu/sfields/software/annotate/docs/README.txt]
below starts to give you a feel for what you need.

=Required Files=
Four files are required by Annotate:

1) A BED-formatted file containing mutations. The first five columns of this file must be

chr start stop ref obs

which are the chromosome of the mutation, the start and stop positions (which can be the same number, for a single-base mutation), the reference allele at that position, and the observed allele (i.e., the mutation). Mutations are then listed one per line. Extra information can be included in the columns to the right of these. Mutation start and stop positions are 1-indexed.

2) A FASTA file containing the reference genome sequence, in which each chromosome is its own sequence.

3) A FASTA file containing the reference coding sequences, in which each gene is its own sequence. Currently, the positional information for each gene is parsed from the headers of this file. As such, it is very important to use the same file as is provided by SGD or with this software.

4) A .GFF-formatted file containing functional non-coding genomic regions.

Files 2-4 are supplied with Annotate. The most up-to-date versions of these files can be found at the Saccharomyces Genome Database (http://www.yeastgenome.org/download-data/sequence). These files are also based on the most recent S.cerevisiae genome sequence (Saccer3). As such, mutations in the file 1 should be based on Saccer3; mutations called in reference to Saccer2 or a different genome assembly will yield incorrect results.

==Running Annotate==
Annotate is run by executing the annotate.py script (as below), which includes passing some required options that direct the script to the files listed above.

python annotate.py --mutations FILE1 --genome FILE2 --coding FILE3 --non-coding FILE4

Depending on the processing speed of your system, Annotate takes about 60 seconds to process 1000 mutations.

==Required Options==
-m, --mutations : BED file containing mutations
-g, --genome : FASTA file containing genome sequence
-c, --coding: FASTA file of coding sequences
-n, --non-coding: GFF file containing non-coding regions

==Optional Options==
-h, --help : Print all options, usage information
--upstream : Distance (in bp) upstream of gene start codons to include in 5'-upstream annotation (default=500)

The limit of dragging and dropping from a local file system up to
SourceLair is file size up to 5 Mb, therefor use the terminal within
SourceLair to directly download the archived files to SourceLair.

There are two popular commands to do this, curl and wget. Both
are illustrated, but you just need to do one. Additionally the command
to unpack the arcvhive is included with each. Note that despite the
extension indicating it is a tar.gz or gzipped tarball, it appears
to only be a .tar archive and so you just need the tar command
to extract.

curl http://depts.washington.edu/sfields/software/annotate/src/Annotate-0.1.tar.gz > Annotate.tar
tar -xf Annotate.tar

-OR-

wget http://depts.washington.edu/sfields/software/annotate/src/Annotate-0.1.tar.gz
tar -xf Annotate-0.1.tar.gz

Navigate into the unpacked directory now.

cd Annotate-0.1

You’ll see from the documentation that 3 of the four files needed to run
this script on the yeast genome are included in the archive with the
original source. Now that you have the script and the accompanying files
unpacked, you just need some data listing mutations.

I am supplying a BED file containing mutations, called
mutation_data.bed [https://gist.githubusercontent.com/fomightez/9c435b0f18bf659a4669/raw/54d514b1fa9ce57ec46c5527fbd1eaf3236943e0/mutation_data.bed].

The wget command you need to run on the SourceLair command line terminal
to download the file is given below. You could of course use curl if
you prefer and can use the above command where it was used as a guide to
writing it. It is important here that the resulting file have the name
mutation_data.bed or be prepared to modify the commands illustrated
below accordingly. (Alternatively you could click the name above and
download it locally and then drag into the SoureLair file pane since it
is a small file.)

wget https://gist.githubusercontent.com/fomightez/9c435b0f18bf659a4669/raw/54d514b1fa9ce57ec46c5527fbd1eaf3236943e0/mutation_data.bed

Unless you have previously installed the Biopython package in your
current SourceLair project, you’ll get an error if you try to run the
annotate.py script at this point.

wayne461@scripts:/mnt/project/Annotate-0.1$ python annotate.py
Traceback (most recent call last):
 File "annotate.py", line 242, in <module>
 from Bio import SeqIO
ImportError: No module named Bio

You simply need to install the needed package to your SourceLair
project. (Packages or modules (sometimes called libraries) are
simply code by others that provide useful functions and abilities that
go beyond the bare bones Python and are generally specific for certain
sorts of tasks. Not having them as part of bare bones Python cuts down
on use of unnecessary resources. They generally need to be installed or
put some place Python will look for them, and then you can import them
at any time to use them. Many Python distributions include several
packages are common. For example you can see all the modules/packages
that come standard with PythonAnywhere
here [https://www.pythonanywhere.com/batteries_included/]. Any
distribution of Python will include a way of installing additional
packages. For example, PythonAnywhere’s instructions are
here [https://www.pythonanywhere.com/wiki/InstallingNewModules].
SourceLair’s are
here [https://www.sourcelair.com/guides/start/python#install-packages-tools-libraries-etc-].)

At the command line terminal of your SourceLair project, type the
following to install the Biopython package.

pip install biopython

Now we should be set to run the annotate.py script.

Looks like from the documentation the command would be …

python annotate.py --mutations mutation_data.bed --genome S288C_reference_sequence_R64-1-1_20110203.fsa --coding orf_coding_all_R64-1-1_20110203.fasta --non-coding saccharomyces_cerevisiae_R64-1-1_20110208.gff.filtered

(Be careful to get it all as it is long and scrolls off to the right.)

Running that unexpectedly FAILS?!?!?!

Looks good according to documentation. What is going on?

Look at annotate.py file some. Specifically the docstring at the top
and the text about arguments at the very end. Two of the arguments don’t
match what the documentation says are the flags signalling them. The
code is going to run what is in the code; it doesn’t know about the
documentation page.

Let’s try that command again modifying it to match what the script
itself says.

python annotate.py --input mutation_data.bed --genome S288C_reference_sequence_R64-1-1_20110203.fsa --sequences orf_coding_all_R64-1-1_20110203.fasta --non-coding saccharomyces_cerevisiae_R64-1-1_20110208.gff.filtered

To view the result you can type the following. (Alternatively you can
double-click on the file mutation_data.bed.annotated in SourceLair’s
file navigation panel. You may first need to reload the browser page to
even see it listed in the file navigation pane though.)

head mutation_data.bed.annotated

You should see a breakdown of the possible impacts of each of the
mutations listed in the provided input file.

Additional Note

Note the example mutation data on the main page describing the
package [http://depts.washington.edu/sfields/software/annotate/]
seems unrelated to yeasts.

Example data listed as:

chr1 213941196 213941196 A G
chr10 942363 942363 C G

Although the example data included with source and discussed in the
documentation is for yeast S. cerevisiae, the example data listed on the
documentation cannot be yeast. Chromosome 1 of S. cerevisiae is only
230218 bp http://www.genome.jp/dbget-bin/www_bget?refseq+NC_001133

Chromsome X of S. cerevisiae is only 745751 bp
http://www.ncbi.nlm.nih.gov/nuccore/BK006943

So both are out of the size range for the chromosomes listed and throws
errors if you try to use those values with the data that comes with the
download of the source file. The specific error is
IndexError: list assignment index out of range.

Example 2

This one will be non-interactive.

HTSeq [http://www-huber.embl.de/users/anders/HTSeq/doc/install.html#installation-on-macos-x]

see manuscript at
http://biorxiv.org/content/biorxiv/early/2014/02/20/002824.full.pdf

Simon Anders, Paul Theodor Pyl, Wolfgang Huber HTSeq — A Python
framework to work with high-throughput sequencing data Bioinformatics
(2014), in print, online at doi:10.1093/bioinformatics/btu638

While the main purpose of HTSeq is to allow you to write your own
analysis scripts, customized to your needs, there are also a couple
of stand-alone scripts for common tasks that can be used without any
Python knowledge. See the Scripts section in the overview below for
what is available.

Real World Examples II: Using APIs

Plotly

Plotly [https://plot.ly/~wayne461/42/file-size-distribution-of-all-105222-protein-data-bank-entries-as-of-jan-7-2015/]

This will be a non-interactive demo of a script running on Domino Data
Lab [http://www.dominodatalab.com/].

	Look at date and stats of plot
here [https://plot.ly/~wayne461/42/file-size-distribution-of-all-105222-protein-data-bank-entries-as-of-jan-7-2015/]

	Script will be run.

	Look at date and stats of plot
here [https://plot.ly/~wayne461/42/file-size-distribution-of-all-105222-protein-data-bank-entries-as-of-jan-7-2015/]

Additional help with plotting biological data via plotly - Exploratory
bioinformatics with plot.ly and IPython notebook: Visualizing gene
expression data [https://plot.ly/ipython-notebooks/bioinformatics/]
(That
notebook [https://github.com/plotly/IPython-plotly/tree/master/notebooks/bioinformatics]
on github.)

Yeastmine

YeastMine [http://yeastmine.yeastgenome.org/yeastmine/begin.do] has
a Python web service
API [http://yeastmine.yeastgenome.org/yeastmine/api.do?subtab=python]

More information about YeastMine:

	Page about it at Saccharomyces Genome Database
(SGD) [http://www.yeastgenome.org/help/analyze/yeastmine-help-page]

	Paper about implementing Intermine system with SGD to make
YeastMine [http://www.ncbi.nlm.nih.gov/pubmed/22434830]

I’ll demo Query Builder and where to get Python code fragments for
designed queries.

Example of integrating YeastMine code fragments into your work

Plan:

Use Yeastmine to convert information into a table into more useful form.

Initial steps will be non-interactive in the interest of time.

Those steps will produce

table_4_gene_list = ["YBL091C-A", "YBL059W", "YBR090C", "YBR186W", "YBR219C", "YBR230C", "YCL005W-A_1", "YCL005W-A_2", "YCR028C-A", "YCR097W_2", "YDL219W", "YDL189W", "YDL137W", "YDL125C", "YDL082W", "YDL079C", "YDL064W", "YDR059C", "YDR099W", "YDR305C", "YDR318W", "YDR367W", "YDR381W", "YDR381C-A", "YDR535C", "YER003C", "YER007C-A", "YER014C-A", "YER044C-A", "YER131W", "YER179W", "YFL039C", "YFL034C-B", "YFL031W", "YFR045W", "YGL251C", "YGL187C", "YGL183C", "YGL033W", "YGR029W", "YGR183C", "YGR225W", "YHR012W", "YHR039C-A", "YHR041C", "YHR079C-A", "YHR123W", "YHR141C", "YHR218W", "YIL148W", "YIL111W", "YIL073C", "YIL004C", "YJL189W", "YJL041W", "YJL031C", "YJL024C", "YJR079W", "YJR094W-A", "YJR112W-A", "YKL006C-A", "YKR005C", "YLL050C", "YLR054C", "YLR078C", "YLR128W", "YLR199C", "YLR202C", "YLR211C", "YLR275W", "YLR333C", "YLR445W", "YML085C", "YML067C", "YML036W", "YML025C", "YML024W", "YML017W", "YMR194C-B", "YMR242C", "YMR292W", "YNL312W", "YNL138W-A", "YNL130C", "YNL066W", "YNL050C", "YNL044W", "YNR053C", "YOL047C", "snR17A", "YOR318C", "YPL241C", "YPL230W", "snR17B", "YPR010C-A", "YPR153W"]

Now replace the example list in the code below and run the code of
finding_genes_in_list_with_SGD_Systematic_Name.py found below.

#!/usr/bin/env python

USAGE: TAKES A LIST OF GENES PROVIDED IN THE LONG SGD SYSTEMATIC NAME FORM
AND COLLECTS MORE USER FRIENDLY VERSION OF NAME AND INFORMATION FOR EACH GENE.

Example input:
["YPR187W", "YPR202W"]

Example output:
S000006391 YPR187W RPO26 RNA POlymerase S. cerevisiae Rpo26p RPB6 ABC23 ORF RNA polymerase subunit ABC23; common to RNA polymerases I, II, and III; part of central core; similar to bacterial omega subunit
S000006406 YPR202W None None S. cerevisiae None None ORF Putative protein of unknown function; similar to telomere-encoded helicases; down-regulated at low calcium levels; YPR202W is not an essential gene; transcript is predicted to be spliced but there is no evidence that it is spliced in vivo

See the README.txt for this script at the link below for more information:
https://github.com/fomightez/yeastmine

IMPETUS FOR THIS SCRIPT:
Kawashima et al. 2014 [http://www.ncbi.nlm.nih.gov/pubmed/24722551] HAD
GOOD-SIZED GENE LISTS WITH SYSTEMATIC NAMES AS PART OF SOME TABLES AND I
WANTED THE LIST IN A FORM THAT IS MORE INFORMATIVE AND HUMAN-READABLE.
##
LATER ADDED THE CONCEPT OF BEING ABLE TO ADD FAVORITE GENES.
CURRENTLY FAVORITE GENES USE THE SGD 'STANDARD NAME' BECAUSE THAT IS
HOW I USUALLY TRACK THEM BUT YOU CAN CHANGE THAT BE PUTTING THEM IN THE
FORM YOU'D LIKE AND ADJUSTING THE CONDITIONAL THAT CHECKS THEM AGAINST THE
SGD GENE LIST.

list_to_get_info_for = ["YPR063C", "YPR098C", "YPR132W", "YPR170W-B", "YPR187W", "YPR202W"]

#OPTIONAL - SEE BELOW
#my_favorite_genes = ["NMD2", "MUD1", "TAN1"]

The following two lines will be needed in every python script:
import intermine
from intermine.webservice import Service
service = Service("http://yeastmine.yeastgenome.org/yeastmine/service")

Get a new query on the class (table) you will be querying:
query = service.new_query("Gene")

The view specifies the output columns
query.add_view(
 "primaryIdentifier", "secondaryIdentifier", "symbol", "name",
 "organism.shortName", "proteins.symbol", "sgdAlias", "featureType", "description"
)

This query's custom sort order is specified below:
query.add_sort_order("Gene.secondaryIdentifier", "ASC")

print "primaryIdentifier\tsecondaryIdentifier\tsymbol\tname\torganism.shortName\tproteins.symbol\tsgdAlias\tfeatureType\tdescription"

for row in query.rows():
 if row["secondaryIdentifier"] in list_to_get_info_for:
 #LIST OF FAVORITE GENES AND ADD AN 'AND' CONDITION TO ABOVE LINE TO LIMIT TO YOUR FAVORITE GENES, like so:
 #if (row["secondaryIdentifier"] in list_to_get_info_for) & (row["symbol"] in my_favorite_genes):
 print row["primaryIdentifier"], row["secondaryIdentifier"], row["symbol"], row["name"], \
 row["organism.shortName"], row["proteins.symbol"], row["sgdAlias"], row["featureType"], \
 row["description"]

NCBI

Using the NCBI Entrez
server [http://www.ncbi.nlm.nih.gov/books/NBK25501/] via Biopython

See the Real World example
#1 [http://jan2015feng-gr-m.readthedocs.org/en/latest/real%20world%201/#example-1]
for a reminder of how to take the script below and run it on
Sourcelair.com. The process is the same.

Unless you have previously installed the Biopython package in your
current SourceLair project, you’ll get an error if you try to run the
script below. (If you already did the examples under the Real World
exercises set #1 then you should be all set unless you startd over with
a new project folder since then.)

If you try to run the script and see the error below, you need to
install the module again.

ImportError: No module named Bio

You simply need to install the needed package to your SourceLair
project. (Packages or modules (sometimes called libraries) are
simply code by others that provide useful functions and abilities that
go beyond the bare bones Python and are generally specific for certain
sorts of tasks. Not having them as part of bare bones Python cuts down
on use of unnecessary resources. They generally need to be installed or
put some place Python will look for them, and then you can import them
at any time to use them. Many Python distributions include several
packages are common. For example you can see all the modules/packages
that come standard with PythonAnywhere
here [https://www.pythonanywhere.com/batteries_included/]. Any
distribution of Python will include a way of installing additional
packages. For example, PythonAnywhere’s instructions are
here [https://www.pythonanywhere.com/wiki/InstallingNewModules].
SourceLair’s are
here [https://www.sourcelair.com/guides/start/python#install-packages-tools-libraries-etc-].)

At the command line terminal of your SourceLair project, type the
following to install the Biopython package.

pip install biopython

Now we should be set to run the script below to use the NCBI Entrez
server [http://www.ncbi.nlm.nih.gov/books/NBK25501/] via Biopython.

from Bio import Entrez
Entrez.email = "YOUR_EMAIL_GOES HERE" #so NCBI can contact you if you abuse system

protein_accn_numbers = ["ABR17211.1", "XP_002864745.1", "AAT45004.1", "XP_003642916.1"]
protein_gi_numbers = []

print "The Accession numbers for protein sequence provided:"
print protein_accn_numbers

#ESearch
print "\nBeginning the ESearch..."
BE CAREFUL TO NOT ABUSE THE NCBI SYSTEM.
see http://biopython.org/DIST/docs/tutorial/Tutorial.html#sec119 for information.
For example, if searching with more than 100 records, you'd need to do this ESearch step
on weekends or outside USA peak times.
for accn in protein_accn_numbers:
 esearch_handle = Entrez.esearch(db="protein", term=accn)
 esearch_result= Entrez.read(esearch_handle)
 esearch_handle.close()
 #print esearch_result
 #print esearch_result["IdList"][0]
 protein_gi_numbers.append(esearch_result["IdList"][0])
#print protein_gi_numbers

retrieved_mRNA_uids = []
#ELink
print "Beginning the ELink step..."
handle = Entrez.elink(dbfrom="protein", db="nuccore", LinkName="protein_nuccore_mrna", id=protein_gi_numbers)
result = Entrez.read(handle)
handle.close()
#print result
for each_record in result:
 mrna_id = each_record["LinkSetDb"][0]["Link"][0]["Id"]
 retrieved_mRNA_uids.append(mrna_id)
#print retrieved_mRNA_uids

#EPost
print "Beginning the EPost step..."
epost_handle = Entrez.epost(db="nuccore", id=",".join(retrieved_mRNA_uids))
epost_result = Entrez.read(epost_handle)
epost_handle.close()

webenv = epost_result["WebEnv"]
query_key = epost_result["QueryKey"]

#EFetch
print "Beginning the EFetch step..."
count = len(retrieved_mRNA_uids)
batch_size = 20
the_records = ""
for start in range(0, count, batch_size):
 end = min(count, start + batch_size)
 print("Fetching records %i thru %i..." % (start + 1, end))
 fetch_handle = Entrez.efetch(db="nuccore",
 rettype="fasta", retmode="text",
 retstart=start, retmax=batch_size,
 webenv=webenv,
 query_key=query_key)
 data = fetch_handle.read()
 fetch_handle.close()
 the_records = the_records + data
print the_records

Sources

The sources for the information used today came from those linked
throughout the content.

However, certain sources deserve special highlighting as they were
particularly useful in developing this workshop, contain a wealth of
related resources, or are especially pertinent at this stage.

	Practical Computing for Biologists book by Haddock and
Dunn [http://practicalcomputing.org/]

	April 2013 Software Carpentry at
Arizona [http://2013-swc-az.readthedocs.org/en/latest/index.html]

	Bioinf-py [http://hplgit.github.io/bioinf-py/doc/pub/html/index.html]
At the main site you can select your
form [http://hplgit.github.io/bioinf-py/doc/web/index.html].

	Programming: Pick up Python by Jeffrey M. Perkel. Nature. 2015
February 5;518:125–6.doi:10.1038/518125a.
PMID: 25653001 [http://www.nature.com/news/programming-pick-up-python-1.16833]

	Interactive notebooks: Sharing the code by Helen Shen. Nature. 2014
Nov 6;515(7525):151-2. doi: 10.1038/515151a. PMID:
25373681 [http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261]

	a two year-old screencast intro of IPython notebook by Titus
Brown [https://www.youtube.com/watch?v=HaS4NXxL5Qc&feature=youtu.be]
(Skip to the three-minute mark since we aren’t necessarily interested
in running it on Amazon web services right now.) A non-interactive
version of the notebook he demonstrates is
here [http://nbviewer.ipython.org/github/fomightez/jan2015feng_gr_m/blob/master/others_demos/titus_screencast.ipynb].

	A hands-on introduction to Python for beginning
programmers [https://www.youtube.com/watch?v=rkx5_MRAV3A]

Going forward

Look into

	Practical Computing for Biologists book by Haddock and
Dunn [http://practicalcomputing.org/]

	April 2013 Software Carpentry at
Arizona [http://2013-swc-az.readthedocs.org/en/latest/index.html]

	Illustrating Python via Bioinformatics Examples
(Bioinf-py) [http://hplgit.github.io/bioinf-py/doc/web/index.html].
At the main site you can select your
form [http://hplgit.github.io/bioinf-py/doc/web/index.html].

	Programming: Pick up Python by Jeffrey M. Perkel. Nature. 2015
February 5;518:125–6.doi:10.1038/518125a. PMID:
25653001 [http://www.nature.com/news/programming-pick-up-python-1.16833]

	Interactive notebooks: Sharing the code by Helen Shen. Nature. 2014
Nov 6;515(7525):151-2. doi: 10.1038/515151a. PMID:
25373681 [http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261]

	See
here [https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook#gs.UeGobjY]
and other resources listed
here [http://retreat16.readthedocs.io/en/latest/references%20by%20section/#background]
for current (as of September 2016) information about Jupyter
Notebook, which was previously called IPython Notebooks.

	March 2015 blog post suggesting mandatory primer courses for basic
skills for students in cellular & molecular biology, genetics, and
related
subfields [http://toddharris.net/blog/2015/03/23/its-time-to-reboot-bioinformatics-education/]

	Scientific computing: Code
alert [http://www.nature.com/naturejobs/science/articles/10.1038/nj7638-563a?WT.mc_id=TWT_NatureNews]
Nature 541,563-565(2017) doi:10.1038/nj7638-563a Published online 25
January 2017 by Monya Baker

“Graduate students who can incorporate programming into research
will have their pick of postdoc positions and other offers, says
Schloss. Such skills — or access to people who have them — are
increasingly necessary for the big-data questions that scientists
want to pursue. “If they think they have a lot of data now, in ten
years we are only going to have more,” he says. “If they don’t
figure it out now, it’s just going to get worse.”

	Article with bottom line supporting learn any
language [http://www.sitepoint.com/whats-best-programming-language-learn-2015/?utm_content=bufferaa412&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer],
the important thing is you use it and stick with it, even if you
prgress slowly.

Learning Python

	A hands-on introduction to Python for beginning
programmers [https://www.youtube.com/watch?v=rkx5_MRAV3A]

	Rosalind, platform for learning bioinformatics and programming
through problem solving [http://rosalind.info/problems/locations/]

	A Whirlwind Tour of
Python [https://github.com/jakevdp/WhirlwindTourOfPython]
accompanies a
ebook/report [http://www.oreilly.com/programming/free/a-whirlwind-tour-of-python.csp]
of the same name by Jake VanderPlas

	Python For Data Science Cheat Sheet - Python
Basics [https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics],
direct link to pdf of sheet
only [https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf]

	Python For Data Science: Parts 1 and 2 by Chris Myers - Cornell Center for Advanced Computing & Jeff Sale - San Diego Supercomputing Center [https://cvw.cac.cornell.edu/pydatasci1/default] - Click ‘next =>’ to step through Part 1 and go back there to get to link to Part 2.

	A modern guide to getting started with Data Science and
Python [http://twiecki.github.io/blog/2014/11/18/python-for-data-science/]

	How to Think Like a Computer Scientist: Learning with Python
2.x [http://www.openbookproject.net/thinkcs/python/english2e/]

	How to Think Like a Computer Scientist: Learning with Python
3.x [http://openbookproject.net/thinkcs/python/english3e/index.html]

	Illustrating Python via Bioinformatics Examples
(Bioinf-py) [http://hplgit.github.io/bioinf-py/doc/web/index.html]

	Python for Biologists [http://pythonforbiologists.com/]

	Using Python for Research: HarvardX
course [http://rafalab.github.io/pages/harvardx.html#python]

	Practical Python Programming course by David Beazley [https://dabeaz-course.github.io/practical-python/]

	Recommended reading to get started with Python for science and data
analysis [http://www.leouieda.com/blog/getting-started-with-python-for-science.html]

	Lectures in Scientific Computing in Python [https://github.com/scientificprogrammingUOS/lectures]

	PyData 101: Everything you need to know to get started in data
science in Python, PyData Seattle 2017 Keynote by Jake
VanderPlas [https://speakerdeck.com/jakevdp/pydata-101]

“The PyData ecosystem is vast and powerful, but it can be
overwhelming to newcomers. In this talk I outline some of the
history of why the Python data science space is the way it is, as
well as what tools and techniques you should focus on to get
started for your own problems.”

	Scipy Lecture Notes: One document to learn numerics, science, and
data with Python [http://www.scipy-lectures.org/]

	The three Coursera courses in Rice University’s Fundamentals of
Computing specialization. The three courses are An Introduction to
Interactive Programming in
Python [https://www.coursera.org/course/interactivepython],
Principles of
Computing [https://www.coursera.org/course/principlescomputing],
and Algorithmic
Thinking [https://www.coursera.org/course/algorithmicthink] By the
third you are learning little to no new Python and focusing on
designing and writing efficient algorithmns, which is useful too. One
of the instructors, Luay Nakhleh, focuses on bioinformatics, and so
while they touch on some of these aspects later in the series of
courses, the main emphasis is computing in general.

	Learn Python the right way in 5
steps [https://www.dataquest.io/blog/learn-python-the-right-way/]

	Coursera course: Programming for Everybody
(Python) [https://www.coursera.org/course/pythonlearn] - Gradually
paced introduction to coding essentials using Python

	Dive Into Python [http://www.diveintopython.net/]

	Bioinformatics and Genomics: IPython and the Systems Biology
Knowledgebase [https://bcrc.bio.umass.edu/courses/spring2012/micbio/micbio660/content/ipython-and-systems-biology-knowledgebase-kbase]

	The Python
Tutorial [https://docs.python.org/2/tutorial/index.html]

	Trinket’s Hour of Python series [https://hourofpython.com/]

	CodeAcademy [http://www.codecademy.com/en/tracks/python]

	Think Python: How to Think Like a Computer
Scientist [http://www.greenteapress.com/thinkpython/]

	“Why We Built Enthought Canopy, An Inside Look” Recorded
Webinar [http://blog.enthought.com/general/why-we-built-canopy/#.VLNDKWTF85g]

	The GOBLET Training Portal: A Global Repository of Bioinformatics
Training Materials, Courses and
Trainers [http://mygoblet.org/training-portal], see abstract of
associated
publication [http://bioinformatics.oxfordjournals.org/content/early/2014/09/03/bioinformatics.btu601.abstract]

	Keep in mind that Enthought advertises they have free online courses
for individuals at degree-granting institutions. the twitter
posting [https://twitter.com/enthought/status/566602865196945408]
said see here [https://training.enthought.com/courses]. (Although
I didn’t see anything about them being free but maybe it is shown
after you register with academic email account?)

NCBI with Python

	BioPython in the Sky! Accessing online databases and running BLAST
using BioPython… [http://www.cbs.dtu.dk/courses/27624/IAH_2.pdf]

NGS Analysis

	Titus Brown and Colleagues’ Next-Gen Sequence Analysis
Workshops [http://ged.msu.edu/angus/], most recent is Next-Gen
Sequence Analysis Workshop
(2014) [http://angus.readthedocs.org/en/2014/]. It also has an
interesting condensed course he taught last year called 2013
Zero-Entry Workshop: Computational Science for
Biologists [http://2013-uw-zero-entry.readthedocs.org/en/latest/].

Intermediate Python and Integrating it with Other Tools

	“Python for Scientists and
Engineers” [http://pythonforengineers.com/python-for-scientists-and-engineers/]

	“Why We Built Enthought Canopy, An Inside Look” Recorded
Webinar [http://blog.enthought.com/general/why-we-built-canopy/#.VLNDKWTF85g].
Learn about getting Canopy
here [https://store.enthought.com/#canopy-academic].

	PyData 101: Everything you need to know to get started in data
science in Python, PyData Seattle 2017 Keynote by Jake
VanderPlas [https://speakerdeck.com/jakevdp/pydata-101]

“The PyData ecosystem is vast and powerful, but it can be
overwhelming to newcomers. In this talk I outline some of the
history of why the Python data science space is the way it is, as
well as what tools and techniques you should focus on to get
started for your own problems.”

	Analyzing data with R in the IPython
notebook [http://nbviewer.ipython.org/github/dboyliao/cookbook-code/blob/master/notebooks/chapter07_stats/08_r.ipynb]

	Filling in Python’s gaps in statistics packages with
Rmagic [http://www.randalolson.com/2013/01/14/filling-in-pythons-gaps-in-statistics-packages-with-rmagic/]

	IPython and Plotly: A Rosetta Stone for MATLAB, R, Python, and Excel
plotting [http://nbviewer.ipython.org/gist/msund/61cdbd5b22c103fffb84]

	Additional help with plotting biological data via plotly -
Exploratory bioinformatics with plot.ly and IPython notebook:
Visualizing gene expression
data [https://plot.ly/ipython-notebooks/bioinformatics/] (That
notebook [https://github.com/plotly/IPython-plotly/tree/master/notebooks/bioinformatics]
on github.)

	Python for
Economists [http://cs.brown.edu/~ambell/pyseminar/Python_for_Economists.pdf]
- primer covering a lot of the essentials

	The Jupyter project [http://jupyter.org/] is the future of the
IPython Notebook project. –> An example of integrating it further
with
Bash [http://jeroenjanssens.com/2015/02/19/ibash-notebook.html].

	What is It that Python Cannot
Do? [http://www.allaboutweb.biz/what-is-it-that-python-cannot-do/?platform=hootsuite]

ADVANCED

Go beyond…

Filling in Python’s gaps in statistics packages with
Rmagic [http://www.randalolson.com/2013/01/14/filling-in-pythons-gaps-in-statistics-packages-with-rmagic/]

Comparing Python and R for Data
Science [http://blog.dominodatalab.com/comparing-python-and-r-for-data-science/]

Choosing R or Python for data analysis? An
infographic [https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis#gs.z=oyf6E]

Shirin Glander’s comparison of R with Python using a practical genomics
data
example [https://shiring.github.io/r_vs_python/2017/01/22/R_vs_Py_post]

How I Like to Use Python (or ‘writing Software as a
Scientist’) [http://nanodatum.wordpress.com/2014/12/26/how-i-like-to-use-python-or-writing-software-as-a-scientist/]

The Top Mistakes Developers Make When Using Python for Big Data
Analytics [https://www.airpair.com/python/posts/top-mistakes-python-big-data-analytics]

Top 10 Data Science Skills, and How to Learn
Them [http://dataconomy.com/top-10-data-science-skills-and-how-to-learn-them]

Epilogue to Session I

In response to questions raised during Session I. I look forward to
another!

Comments and docstrings and placeholders

Comments

Python will disregard everything on a line after an # that is not
within a string. You can comment out entire lines by beginning them with
#.

Example:

sequence = 'GAATTC' #EcoRI site
I like enzymes
print sequence

If you need to comment out blocks of code, you can take advantage of
your text editor to add # to multiple lines at once. In Sublime Text
you highlight the text block with the cursor and then use the Edit
menu to naviagte to Toggle Block Comment, i.e., Edit
menu>Comment>Toggle Block Comment`.

Alternatively you can use a docstring.

Docstrings

Typically docstrings are used below the first line of a a function,
function def line to explain the function of the function. Example:

def function_name(variable_passed_in):
 """
 Calculate or do something

 Args:
 variable_passed_in: a variable represention something
 Returns:
 description of output
 Raises:
 TypeError: if variable_passed_in is not a number.
 ValueError: if variable_passed_in is negative.

 """
 pass

code example adapted from
http://stackoverflow.com/questions/3898572/what-is-the-standard-python-docstring-format

Docstrings used elsewhere can be used for large comment blocks as well.

Docstrings can also be assigned as strings. Typically that approach is
used when you want to print to stdout a a lot of text. Such as a guide
to usage of your program in repsonse to certain input fromt the user.

Pass as a placholder

Note that in the function example adove, pass is used a placeholder
for code to be fleshed out later.

pass can be useful for building the skeleton of your script as
certain text editors and Interactive Development Environments (IDE) will
not allow you to leave lines following a colon blank.

Installed modules/packages/libraries

Get installed modules/package command library command

help('modules')

works on sourcelair.com at the Python prompt. Interestingly, it doesn’t
work on my Mac at the Python prompt (in Terminal) where I have Enthought
Canopy installed as my version of Python. Enthought has a package
manager and so they are listed under that if you open Entought’s Canopy
gui analysis environment.

adapted from from
http://stackoverflow.com/questions/739993/how-can-i-get-a-list-of-locally-installed-python-modules

Current scope and visualizing your coding steps

In Python interactive mode that comes up when you type Python:

- dir() will give you the list of in scope variables
- vars() gives you a dictionary of variables
- globals() will give you a dictionary of global variables
- locals() will give you a dictionary of local variables
- vars()

In IPython Notebook: type whos

adapted from
http://stackoverflow.com/questions/633127/viewing-all-defined-variables

(For more on scope and Python’s namespaces, see A beginner’s guide to
Python’s namespaces, scope
resolution… [http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/scope_resolution_legb_rule.ipynb])

Examining the current scope can be part of the more general process of
debugging your script, and so I’ll touch on that too.

The Online Python Tutor [http://pythontutor.com/] or Codeskulptor’s
visualization mode (Viz
mode) [http://www.codeskulptor.org/viz/index.html] will show values
as you step through each line of your script.

For debugging real scripts in the typical Python environment, you can:

- add printing variables and messages. You can comment these out. You can even use a the `logging` module to control statements you can turn off at a document level. See lines 70-72 and line 115 of https://github.com/fomightez/sequencework/blob/master/ConvertSeq/ConvertFASTAdnaSEQtoRNA.py for an example if it in action. See https://docs.python.org/2/howto/logging.html for information about the `logging` module in general.

- use a debugger module (see https://docs.python.org/2/library/pdb.html and http://hplgit.github.io/bioinf-py/doc/pub/html/main_bioinf.html for some guidance in this)

- Enthought Canopy has a nice debugging implementation. You can see a video [here](https://www.enthought.com/products/canopy/canopy-python-debugger/) to get an idea of the features and how one uses these types of approaches to debug in general.

Index

January 2015 Feng Lab Introduction to Python Workshop

Access it in a easily readable format at http://bit.ly/FengPyCode (shortcut for http://jan2015feng-gr-m.readthedocs.org/en/latest/)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 January 2015 Introduction to Python coding workshop

 		
 Getting started

 		
 Using this Web site

 		
 Preparation

 		
 Intro to technology

 		
 Why Python

 		
 Slides

 		
 Where to code and run Python

 		
 On Your Desktop - Asterisks indicates those in this section I have used and they are in order of preference/familiarty in this particular section

 		
 In Your Browser/Cloud - Asterisks indicates those in this section I have used

 		
 In Your Browser - Emulators (you won’t know it isn’t REALLY full-featured Python, for the most part)

 		
 for installing IPython Notebook handling on your machine

 		
 Python for today

 		
 Getting started, we’ll use Sourcelair and Sagemath Cloud

 		
 Sagemath Cloud use is for the IPython Notebook ability

 		
 Using Sourcelair to run Python Interactively

 		
 Real World Examples I: Running Other’s Python code

 		
 NGS Analysis with Python

 		
 Once you can run Python, you can use others’ code

 		
 Example 1

 		
 Example 2

 		
 Real World Examples II: Using APIs

 		
 Plotly

 		
 Yeastmine

 		
 Example of integrating YeastMine code fragments into your work

 		
 NCBI

 		
 Sources

 		
 Going forward

 		
 Look into

 		
 Learning Python

 		
 NCBI with Python

 		
 NGS Analysis

 		
 Intermediate Python and Integrating it with Other Tools

 		
 ADVANCED

 		
 Go beyond…

 		
 Epilogue to Session I

 		
 Comments and docstrings and placeholders

 		
 Comments

 		
 Docstrings

 		
 Pass as a placholder

 		
 Installed modules/packages/libraries

 		
 Current scope and visualizing your coding steps

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

